Logo Search packages:      
Sourcecode: matplotlib version File versions  Download package


00001 """
This module contains the instantiations of color mapping classes

import colors
from matplotlib import verbose
from matplotlib import rcParams
from matplotlib.numerix import asarray
from numerix import nx
import numerix.ma as ma
from _cm import *

00015 def get_cmap(name=None, lut=None):
    Get a colormap instance, defaulting to rc values if name is None
    if name is None: name = rcParams['image.cmap']
    if lut is None: lut = rcParams['image.lut']

    assert(name in datad.keys())
    return colors.LinearSegmentedColormap(name,  datad[name], lut)

00025 class ScalarMappable:
    This is a mixin class to support scalar -> RGBA mapping.  Handles
    normalization and colormapping

00031     def __init__(self, norm=None, cmap=None):
        norm is a colors.Norm instance to map luminance to 0-1
        cmap is a cm colormap instance

        if cmap is None: cmap = get_cmap()
        if norm is None: norm = colors.normalize()

        self._A = None
        self.norm = norm
        self.cmap = cmap
        self.observers = []
        self.colorbar = None

    def set_colorbar(self, im, ax):
        'set the colorbar image and axes associated with mappable'
        self.colorbar = im, ax

00050     def to_rgba(self, x, alpha=1.0):
        '''Return a normalized rgba array corresponding to x.
        If x is already an rgb or rgba array, return it unchanged.
        if hasattr(x, 'shape') and len(x.shape)>2: return x
        x = ma.asarray(x)
        x = self.norm(x)
        x = self.cmap(x, alpha)
        return x

    def set_array(self, A):
        'Set the image array from numeric/numarray A'
        from numerix import typecode, typecodes
        if typecode(A) in typecodes['Float']:
            self._A = A.astype(nx.Float32)
            self._A = A.astype(nx.Int16)

    def get_array(self):
        'Return the array'
        return self._A

    def get_clim(self):
        'return the min, max of the color limits for image scaling'
        return self.norm.vmin, self.norm.vmax

    def set_clim(self, vmin=None, vmax=None):
        'set the norm limits for image scaling'
        if vmin is not None: self.norm.vmin = vmin
        if vmax is not None: self.norm.vmax = vmax

    def set_cmap(self, cmap):
        'set the colormap for luminance data'
        if cmap is None: cmap = get_cmap()
        self.cmap = cmap

    def set_norm(self, norm):
        'set the normalization instance'
        if norm is None: norm = colors.normalize()
        self.norm = norm

00094     def autoscale(self):
        Autoscale the scalar limits on the norm instance using the
        current array
        if self._A is None:
            raise TypeError('You must first set_array for mappable')

00104     def add_observer(self, mappable):
        whenever the norm, clim or cmap is set, call the notify
        instance of the mappable observer with self.

        This is designed to allow one image to follow changes in the
        cmap of another image

00114     def notify(self, mappable):
        If this is called then we are pegged to another mappable.
        Update the cmap, norm accordingly

00122     def changed(self):
        Call this whenever the mappable is changed so observers can
        update state
        for observer in self.observers:

Generated by  Doxygen 1.6.0   Back to index