00001 """ Support for plotting fields of arrows. Presently this contains a single class, Quiver, but it might make sense to consolidate other arrow plotting here. This will also become a home for things such as standard deviation ellipses, which can and will be derived very easily from the Quiver code. """ _quiver_doc = """ Plot a 2-D field of arrows. Function signatures: quiver(U, V, **kw) quiver(U, V, C, **kw) quiver(X, Y, U, V, **kw) quiver(X, Y, U, V, C, **kw) Arguments: X, Y give the x and y coordinates of the arrow locations (default is tail of arrow; see 'pivot' kwarg) U, V give the x and y components of the arrow vectors C is an optional array used to map colors to the arrows All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be generated as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X) and len(Y) match the column and row dimensions of U, then X and Y will be expanded with meshgrid. Keyword arguments (default given first): * units = 'width' | 'height' | 'dots' | 'inches' | 'x' | 'y' arrow units; the arrow dimensions *except for length* are in multiples of this unit. * scale = None | float data units per arrow unit, e.g. m/s per plot width; a smaller scale parameter makes the arrow longer. If None, a simple autoscaling algorithm is used, based on the average vector length and the number of vectors. Arrow dimensions and scales can be in any of several units: 'width' or 'height': the width or height of the axes 'dots' or 'inches': pixels or inches, based on the figure dpi 'x' or 'y': X or Y data units In all cases the arrow aspect ratio is 1, so that if U==V the angle of the arrow on the plot is 45 degrees CCW from the X-axis. The arrows scale differently depending on the units, however. For 'x' or 'y', the arrows get larger as one zooms in; for other units, the arrow size is independent of the zoom state. For 'width or 'height', the arrow size increases with the width and height of the axes, respectively, when the the window is resized; for 'dots' or 'inches', resizing does not change the arrows. * width = ? shaft width in arrow units; default depends on choice of units, above, and number of vectors; a typical starting value is about 0.005 times the width of the plot. * headwidth = 3 head width as multiple of shaft width * headlength = 5 head length as multiple of shaft width * headaxislength = 4.5 head length at shaft intersection * minshaft = 1 length below which arrow scales, in units of head length. Do not set this to less than 1, or small arrows will look terrible! * minlength = 1 minimum length as a multiple of shaft width; if an arrow length is less than this, plot a dot (hexagon) of this diameter instead. The defaults give a slightly swept-back arrow; to make the head a triangle, make headaxislength the same as headlength. To make the arrow more pointed, reduce headwidth or increase headlength and headaxislength. To make the head smaller relative to the shaft, scale down all the head* parameters. You will probably do best to leave minshaft alone. * pivot = 'tail' | 'middle' | 'tip' The part of the arrow that is at the grid point; the arrow rotates about this point, hence the name 'pivot'. * color = 'k' | any matplotlib color spec or sequence of color specs. This is a synonym for the PolyCollection facecolor kwarg. If C has been set, 'color' has no effect. * All PolyCollection kwargs are valid, in the sense that they will be passed on to the PolyCollection constructor. In particular, one might want to use, for example: linewidths = (1,), edgecolors = ('g',) to make the arrows have green outlines of unit width. """ _quiverkey_doc = """ Add a key to a quiver plot. Function signature: quiverkey(Q, X, Y, U, label, **kw) Arguments: Q is the Quiver instance returned by a call to quiver. X, Y give the location of the key; additional explanation follows. U is the length of the key label is a string with the length and units of the key Keyword arguments (default given first): * coordinates = 'axes' | 'figure' | 'data' | 'inches' Coordinate system and units for X, Y: 'axes' and 'figure' are normalized coordinate systems with 0,0 in the lower left and 1,1 in the upper right; 'data' are the axes data coordinates (used for the locations of the vectors in the quiver plot itself); 'inches' is position in the figure in inches, with 0,0 at the lower left corner. * color overrides face and edge colors from Q. * labelpos = 'N' | 'S' | 'E' | 'W' Position the label above, below, to the right, to the left of the arrow, respectively. * labelsep = 0.1 inches distance between the arrow and the label * labelcolor (defaults to default Text color) * fontproperties is a dictionary with keyword arguments accepted by the FontProperties initializer: family, style, variant, size, weight Any additional keyword arguments are used to override vector properties taken from Q. The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is 'N' or 'S', X,Y give the position of the middle of the key arrow. If labelpos is 'E', X,Y positions the head, and if labelpos is 'W', X,Y positions the tail; in either of these two cases, X,Y is somewhere in the middle of the arrow+label key object. """ from matplotlib.collections import PolyCollection from matplotlib.mlab import meshgrid from matplotlib import numerix as nx from matplotlib import transforms as T from matplotlib.text import Text from matplotlib.artist import Artist from matplotlib.font_manager import FontProperties import math 00153 class QuiverKey(Artist): """ Labelled arrow for use as a quiver plot scale key. """ halign = {'N': 'center', 'S': 'center', 'E': 'left', 'W': 'right'} valign = {'N': 'bottom', 'S': 'top', 'E': 'center', 'W': 'center'} pivot = {'N': 'mid', 'S': 'mid', 'E': 'tip', 'W': 'tail'} def __init__(self, Q, X, Y, U, label, **kw): Artist.__init__(self) self.Q = Q self.X = X self.Y = Y self.U = U self.coord = kw.pop('coordinates', 'axes') self.color = kw.pop('color', None) self.label = label self.labelsep = T.Value(kw.pop('labelsep', 0.1)) * Q.ax.figure.dpi self.labelpos = kw.pop('labelpos', 'N') self.labelcolor = kw.pop('labelcolor', None) self.fontproperties = kw.pop('fontproperties', dict()) self.kw = kw self.text = Text(text=label, horizontalalignment=self.halign[self.labelpos], verticalalignment=self.valign[self.labelpos], fontproperties=FontProperties(**self.fontproperties)) if self.labelcolor is not None: self.text.set_color(self.labelcolor) self._initialized = False self.zorder = Q.zorder + 0.1 __init__.__doc__ = _quiverkey_doc def _init(self): if not self._initialized: self._set_transform() _pivot = self.Q.pivot self.Q.pivot = self.pivot[self.labelpos] self.verts = self.Q._make_verts(nx.array([self.U]), nx.zeros((1,))) self.Q.pivot = _pivot kw = self.Q.polykw kw.update(self.kw) self.vector = PolyCollection(self.verts, offsets=[(self.X,self.Y)], transOffset=self.get_transform(), **kw) if self.color is not None: self.vector.set_color(self.color) self.vector.set_transform(self.Q.get_transform()) self._initialized = True def _text_x(self, x): if self.labelpos == 'E': return x + self.labelsep.get() elif self.labelpos == 'W': return x - self.labelsep.get() else: return x def _text_y(self, y): if self.labelpos == 'N': return y + self.labelsep.get() elif self.labelpos == 'S': return y - self.labelsep.get() else: return y def draw(self, renderer): self._init() self.vector.draw(renderer) x, y = self.get_transform().xy_tup((self.X, self.Y)) self.text.set_x(self._text_x(x)) self.text.set_y(self._text_y(y)) self.text.draw(renderer) def _set_transform(self): if self.coord == 'data': self.set_transform(self.Q.ax.transData) elif self.coord == 'axes': self.set_transform(self.Q.ax.transAxes) elif self.coord == 'figure': self.set_transform(self.Q.ax.figure.transFigure) elif self.coord == 'inches': dx = ax.figure.dpi bb = T.Bbox(T.origin(), T.Point(dx, dx)) trans = T.get_bbox_transform(T.unit_bbox(), bb) self.set_transform(trans) else: raise ValueError('unrecognized coordinates') quiverkey_doc = _quiverkey_doc 00244 class Quiver(PolyCollection): """ Specialized PolyCollection for arrows. The only API method is set_UVC(), which can be used to change the size, orientation, and color of the arrows; their locations are fixed when the class is instantiated. Possibly this method will be useful in animations. Much of the work in this class is done in the draw() method so that as much information as possible is available about the plot. In subsequent draw() calls, recalculation is limited to things that might have changed, so there should be no performance penalty from putting the calculations in the draw() method. """ def __init__(self, ax, *args, **kw): self.ax = ax X, Y, U, V, C = self._parse_args(*args) self.X = X self.Y = Y self.N = len(X) self.scale = kw.pop('scale', None) self.headwidth = kw.pop('headwidth', 3) self.headlength = float(kw.pop('headlength', 5)) self.headaxislength = kw.pop('headaxislength', 4.5) self.minshaft = kw.pop('minshaft', 1) self.minlength = kw.pop('minlength', 1) self.units = kw.pop('units', 'width') self.width = kw.pop('width', None) self.color = kw.pop('color', 'k') self.pivot = kw.pop('pivot', 'tail') kw.setdefault('facecolors', self.color) kw.setdefault('linewidths', (0,)) PolyCollection.__init__(self, None, offsets=zip(X, Y), transOffset=ax.transData, **kw) self.polykw = kw self.set_UVC(U, V, C) self._initialized = False self.keyvec = None self.keytext = None __init__.__doc__ = """ The constructor takes one required argument, an Axes instance, followed by the args and kwargs described by the following pylab interface documentation: %s""" % _quiver_doc def _parse_args(self, *args): X, Y, U, V, C = [None]*5 args = list(args) if len(args) == 3 or len(args) == 5: C = nx.ravel(args.pop(-1)) #print 'in parse_args, C:', C V = nx.ma.asarray(args.pop(-1)) U = nx.ma.asarray(args.pop(-1)) nn = nx.shape(U) nc = nn[0] nr = 1 if len(nn) > 1: nr = nn[1] if len(args) == 2: X, Y = [nx.ravel(a) for a in args] if len(X) == nc and len(Y) == nr: X, Y = [nx.ravel(a) for a in meshgrid(X, Y)] else: X, Y = [nx.ravel(a) for a in meshgrid(nx.arange(nc), nx.arange(nr))] return X, Y, U, V, C 00315 def _init(self): """initialization delayed until first draw; allow time for axes setup. """ if not self._initialized: trans = self._set_transform() ax = self.ax sx, sy = trans.inverse_xy_tup((ax.bbox.width(), ax.bbox.height())) self.span = sx sn = max(8, min(25, math.sqrt(self.N))) if self.width is None: self.width = 0.06 * self.span / sn def draw(self, renderer): self._init() if self._new_UV: verts = self._make_verts(self.U, self.V) self.set_verts(verts) self._new_UV = False PolyCollection.draw(self, renderer) def set_UVC(self, U, V, C=None): self.U = nx.ma.ravel(U) self.V = nx.ma.ravel(V) if C is not None: self.set_array(nx.ravel(C)) self._new_UV = True def _set_transform(self): ax = self.ax if self.units in ('x', 'y'): if self.units == 'x': dx0 = ax.viewLim.ur().x() - ax.viewLim.ll().x() dx1 = ax.bbox.ur().x() - ax.bbox.ll().x() else: dx0 = ax.viewLim.ur().y() - ax.viewLim.ll().y() dx1 = ax.bbox.ur().y() - ax.bbox.ll().y() dx = dx1/dx0 else: if self.units == 'width': dx = ax.bbox.ur().x() - ax.bbox.ll().x() elif self.units == 'height': dx = ax.bbox.ur().y() - ax.bbox.ll().y() elif self.units == 'dots': dx = T.Value(1) elif self.units == 'inches': dx = ax.figure.dpi else: raise ValueError('unrecognized units') bb = T.Bbox(T.origin(), T.Point(dx, dx)) trans = T.get_bbox_transform(T.unit_bbox(), bb) self.set_transform(trans) return trans def _make_verts(self, U, V): uv = U+V*1j uv = nx.ravel(nx.ma.filled(uv,nx.nan)) a = nx.absolute(uv) if self.scale is None: sn = max(10, math.sqrt(self.N)) # get valid values for average # (complicated by support for 3 array packages) a_valid_cond = ~nx.isnan(a) a_valid_idx = nx.nonzero(a_valid_cond) if isinstance(a_valid_idx,tuple): # numpy.nonzero returns tuple a_valid_idx = a_valid_idx[0] valid_a = nx.take(a,a_valid_idx) scale = 1.8 * nx.average(valid_a) * sn # crude auto-scaling scale = scale/self.span self.scale = scale length = a/(self.scale*self.width) X, Y = self._h_arrows(length) xy = (X+Y*1j) * nx.exp(1j*nx.angle(uv[...,nx.newaxis]))*self.width xy = xy[:,:,nx.newaxis] XY = nx.concatenate((xy.real, xy.imag), axis=2) return XY 00396 def _h_arrows(self, length): """ length is in arrow width units """ minsh = self.minshaft * self.headlength N = len(length) length = nx.reshape(length, (N,1)) x = nx.array([0, -self.headaxislength, -self.headlength, 0], nx.Float64) x = x + nx.array([0,1,1,1]) * length y = 0.5 * nx.array([1, 1, self.headwidth, 0], nx.Float64) y = nx.repeat(y[nx.newaxis,:], N) x0 = nx.array([0, minsh-self.headaxislength, minsh-self.headlength, minsh], nx.Float64) y0 = 0.5 * nx.array([1, 1, self.headwidth, 0], nx.Float64) ii = [0,1,2,3,2,1,0] X = nx.take(x, ii, 1) Y = nx.take(y, ii, 1) Y[:, 3:] *= -1 X0 = nx.take(x0, ii) Y0 = nx.take(y0, ii) Y0[3:] *= -1 shrink = length/minsh X0 = shrink * X0[nx.newaxis,:] Y0 = shrink * Y0[nx.newaxis,:] short = nx.repeat(length < minsh, 7, 1) #print 'short', length < minsh X = nx.where(short, X0, X) Y = nx.where(short, Y0, Y) if self.pivot[:3] == 'mid': X -= 0.5 * X[:,3, nx.newaxis] elif self.pivot[:3] == 'tip': X = X - X[:,3, nx.newaxis] #numpy bug? using -= does not # work here unless we multiply # by a float first, as with 'mid'. tooshort = length < self.minlength if nx.any(tooshort): th = nx.arange(0,7,1, nx.Float64) * (nx.pi/3.0) x1 = nx.cos(th) * self.minlength * 0.5 y1 = nx.sin(th) * self.minlength * 0.5 X1 = nx.repeat(x1[nx.newaxis, :], N, 0) Y1 = nx.repeat(y1[nx.newaxis, :], N, 0) tooshort = nx.repeat(tooshort, 7, 1) X = nx.where(tooshort, X1, X) Y = nx.where(tooshort, Y1, Y) return X, Y quiver_doc = _quiver_doc