#!/usr/bin/python # 3dproj.py # """ Various transforms used for by the 3D code """ from collections import LineCollection from patches import Circle import numpy as npy import numpy.linalg as linalg from math import sqrt def _hide_cross(a,b): """ Cross product of two vectors A x B = <Ay*Bz - Az*By, Az*Bx - Ax*Bz, Ax*By - Ay*Bx> a x b = [a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1] """ return npy.array([a[1]*b[2]-a[2]*b[1],a[2]*b[0]-a[0]*b[2],a[0]*b[1] - a[1]*b[0]]) cross = _hide_cross def line2d(p0,p1): """ Return 2D equation of line in the form ax+by+c = 0 """ # x + x1 = 0 x0,y0 = p0[:2] x1,y1 = p1[:2] # if x0==x1: a = -1 b = 0 c = x1 elif y0==y1: a = 0 b = 1 c = -y1 else: a = (y0-y1) b = (x0-x1) c = (x0*y1 - x1*y0) return a,b,c def line2d_dist(l, p): """ Distance from line to point line is a tuple of coefficients a,b,c """ a,b,c = l x0,y0 = p return abs((a*x0 + b*y0 + c)/npy.sqrt(a**2+b**2)) def line2d_seg_dist(p1,p2, p0): """distance(s) from line defined by p1 - p2 to point(s) p0 p0[0] = x(s) p0[1] = y(s) intersection point p = p1 + u*(p2-p1) and intersection point lies within segement if u is between 0 and 1 """ x21 = p2[0] - p1[0] y21 = p2[1] - p1[1] x01 = npy.asarray(p0[0]) - p1[0] y01 = npy.asarray(p0[1]) - p1[1] u = (x01*x21 + y01*y21)/float(abs(x21**2 + y21**2)) u = npy.clip(u, 0, 1) d = npy.sqrt((x01 - u*x21)**2 + (y01 - u*y21)**2) return d def test_lines_dists(): ax = pylab.gca() xs,ys = (0,30),(20,150) pylab.plot(xs,ys) points = zip(xs,ys) p0,p1 = points xs,ys = (0,0,20,30),(100,150,30,200) pylab.scatter(xs,ys) # dist = line2d_seg_dist(p0,p1,(xs[0],ys[0])) dist = line2d_seg_dist(p0,p1,npy.array((xs,ys))) for x,y,d in zip(xs,ys,dist): c = Circle((x,y),d,fill=0) ax.add_patch(c) # pylab.xlim(-200,200) pylab.ylim(-200,200) pylab.show() def mod(v): """3d vector length""" return npy.sqrt(v[0]**2+v[1]**2+v[2]**2) def world_transformation(xmin,xmax, ymin,ymax, zmin,zmax): dx,dy,dz = (xmax-xmin),(ymax-ymin),(zmax-zmin) return npy.array([ [1.0/dx,0,0,-xmin/dx], [0,1.0/dy,0,-ymin/dy], [0,0,1.0/dz,-zmin/dz], [0,0,0,1.0]]) def test_world(): xmin,xmax = 100,120 ymin,ymax = -100,100 zmin,zmax = 0.1,0.2 M = world_transformation(xmin,xmax,ymin,ymax,zmin,zmax) print M def view_transformation(E, R, V): n = (E - R) ## new # n /= mod(n) # u = npy.cross(V,n) # u /= mod(u) # v = npy.cross(n,u) # Mr = npy.diag([1.]*4) # Mt = npy.diag([1.]*4) # Mr[:3,:3] = u,v,n # Mt[:3,-1] = -E ## end new ## old n = n / mod(n) u = cross(V,n) u = u / mod(u) v = cross(n,u) Mr = [[u[0],u[1],u[2],0], [v[0],v[1],v[2],0], [n[0],n[1],n[2],0], [0, 0, 0, 1], ] # Mt = [[1, 0, 0, -E[0]], [0, 1, 0, -E[1]], [0, 0, 1, -E[2]], [0, 0, 0, 1]] ## end old return npy.dot(Mr,Mt) def persp_transformation(zfront,zback): a = (zfront+zback)/(zfront-zback) b = -2*(zfront*zback)/(zfront-zback) return npy.array([[1,0,0,0], [0,1,0,0], [0,0,a,b], [0,0,-1,0] ]) def proj_transform_vec(vec, M): vecw = npy.dot(M,vec) w = vecw[3] # clip here.. txs,tys,tzs = vecw[0]/w,vecw[1]/w,vecw[2]/w return txs,tys,tzs def proj_transform_vec_clip(vec, M): vecw = npy.dot(M,vec) w = vecw[3] # clip here.. txs,tys,tzs = vecw[0]/w,vecw[1]/w,vecw[2]/w tis = (vecw[0] >= 0) * (vecw[0] <= 1) * (vecw[1] >= 0) * (vecw[1] <= 1) if npy.sometrue( tis ): tis = vecw[1]<1 return txs,tys,tzs,tis def inv_transform(xs,ys,zs,M): iM = linalg.inv(M) vec = vec_pad_ones(xs,ys,zs) vecr = npy.dot(iM,vec) try: vecr = vecr/vecr[3] except OverflowError: pass return vecr[0],vecr[1],vecr[2] def vec_pad_ones(xs,ys,zs): try: try: vec = npy.array([xs,ys,zs,npy.ones(xs.shape)]) except (AttributeError,TypeError): vec = npy.array([xs,ys,zs,npy.ones((len(xs)))]) except TypeError: vec = npy.array([xs,ys,zs,1]) return vec def proj_transform(xs,ys,zs, M): """ Transform the points by the projection matrix """ vec = vec_pad_ones(xs,ys,zs) return proj_transform_vec(vec,M) def proj_transform_clip(xs,ys,zs, M): """ Transform the points by the projection matrix and return the clipping result returns txs,tys,tzs,tis """ vec = vec_pad_ones(xs,ys,zs) return proj_transform_vec_clip(vec,M) transform = proj_transform def proj_points(points, M): return zip(*proj_trans_points(points,M)) def proj_trans_points(points, M): xs,ys,zs = zip(*points) return proj_transform(xs,ys,zs,M) def proj_trans_clip_points(points, M): xs,ys,zs = zip(*points) return proj_transform_clip(xs,ys,zs,M) def test_proj_draw_axes(M, s=1): xs,ys,zs = [0,s,0,0],[0,0,s,0],[0,0,0,s] txs,tys,tzs = proj_transform(xs,ys,zs,M) o,ax,ay,az = (txs[0],tys[0]),(txs[1],tys[1]),(txs[2],tys[2]),(txs[3],tys[3]) lines = [(o,ax),(o,ay),(o,az)] # ax = pylab.gca() linec = LineCollection(lines) ax.add_collection(linec) for x,y,t in zip(txs,tys,['o','x','y','z']): pylab.text(x,y,t) def test_proj_make_M(E=None): # eye point E = E or npy.array([1,-1,2])*1000 #E = npy.array([20,10,20]) R = npy.array([1,1,1])*100 V = npy.array([0,0,1]) viewM = view_transformation(E,R,V) perspM = persp_transformation(100,-100) M = npy.dot(perspM,viewM) return M def test_proj(): M = test_proj_make_M() ts = ['%d' % i for i in [0,1,2,3,0,4,5,6,7,4]] #xs,ys,zs = [0,1,1,0,0,1,1,0],[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,1,1] xs,ys,zs = [0,1,1,0,0, 0,1,1,0,0],[0,0,1,1,0, 0,0,1,1,0],[0,0,0,0,0, 1,1,1,1,1] xs,ys,zs = [npy.array(v)*300 for v in (xs,ys,zs)] # test_proj_draw_axes(M,s=400) txs,tys,tzs = proj_transform(xs,ys,zs,M) ixs,iys,izs = inv_transform(txs,tys,tzs,M) pylab.scatter(txs,tys,c=tzs) pylab.plot(txs,tys,c='r') for x,y,t in zip(txs,tys,ts): pylab.text(x,y,t) # pylab.xlim(-0.2,0.2) pylab.ylim(-0.2,0.2) # pylab.show() def rot_x(V,alpha): cosa,sina = npy.cos(alpha),npy.sin(alpha) M1 = npy.array([[1,0,0,0], [0,cosa,-sina,0], [0,sina,cosa,0], [0,0,0,0]]) # return npy.dot(M1,V) def test_rot(): V = [1,0,0,1] print rot_x(V, npy.pi/6) V = [0,1,0,1] print rot_x(V, npy.pi/6) if __name__ == "__main__": test_proj()