00001 """ Tick locating and formatting ============================ This module contains classes to support completely configurable tick locating and formatting. Although the locators know nothing about major or minor ticks, they are used by the Axis class to support major and minor tick locating and formatting. Generic tick locators and formatters are provided, as well as domain specific custom ones.. Tick locating ------------- The Locator class is the base class for all tick locators. The locators handle autoscaling of the view limits based on the data limits, and the choosing of tick locations. A useful semi-automatic tick locator is MultipleLocator. You initialize this with a base, eg 10, and it picks axis limits and ticks that are multiples of your base. The Locator subclasses defined here are * NullLocator - No ticks * FixedLocator - Tick locations are fixed * IndexLocator - locator for index plots (eg where x = range(len(y)) * LinearLocator - evenly spaced ticks from min to max * LogLocator - logarithmically ticks from min to max * MultipleLocator - ticks and range are a multiple of base; either integer or float * OldAutoLocator - choose a MultipleLocator and dyamically reassign it for intelligent ticking during navigation * MaxNLocator - finds up to a max number of ticks at nice locations * AutoLocator - MaxNLocator with simple defaults. This is the default tick locator for most plotting. There are a number of locators specialized for date locations - see the dates module You can define your own locator by deriving from Locator. You must override the __call__ method, which returns a sequence of locations, and you will probably want to override the autoscale method to set the view limits from the data limits. If you want to override the default locator, use one of the above or a custom locator and pass it to the x or y axis instance. The relevant methods are:: ax.xaxis.set_major_locator( xmajorLocator ) ax.xaxis.set_minor_locator( xminorLocator ) ax.yaxis.set_major_locator( ymajorLocator ) ax.yaxis.set_minor_locator( yminorLocator ) The default minor locator is the NullLocator, eg no minor ticks on by default. Tick formatting --------------- Tick formatting is controlled by classes derived from Formatter. The formatter operates on a single tick value and returns a string to the axis. * NullFormatter - no labels on the ticks * FixedFormatter - set the strings manually for the labels * FuncFormatter - user defined function sets the labels * FormatStrFormatter - use a sprintf format string * ScalarFormatter - default formatter for scalars; autopick the fmt string * LogFormatter - formatter for log axes You can derive your own formatter from the Formatter base class by simply overriding the __call__ method. The formatter class has access to the axis view and data limits. To control the major and minor tick label formats, use one of the following methods:: ax.xaxis.set_major_formatter( xmajorFormatter ) ax.xaxis.set_minor_formatter( xminorFormatter ) ax.yaxis.set_major_formatter( ymajorFormatter ) ax.yaxis.set_minor_formatter( yminorFormatter ) See examples/major_minor_demo1.py for an example of setting major an minor ticks. See the matplotlib.dates module for more information and examples of using date locators and formatters. DEVELOPERS NOTE If you are implementing your own class or modifying one of these, it is critical that you use viewlim and dataInterval READ ONLY MODE so multiple axes can share the same locator w/o side effects! """ from __future__ import division import sys, os, re, time, math, warnings import numpy as npy import matplotlib as mpl from matplotlib import verbose, rcParams from matplotlib import cbook from matplotlib import transforms as mtrans class TickHelper: viewInterval = None dataInterval = None def verify_intervals(self): if self.dataInterval is None: raise RuntimeError("You must set the data interval to use this function") if self.viewInterval is None: raise RuntimeError("You must set the view interval to use this function") def set_view_interval(self, interval): self.viewInterval = interval def set_data_interval(self, interval): self.dataInterval = interval def set_bounds(self, vmin, vmax): ''' Set dataInterval and viewInterval from numeric vmin, vmax. This is for stand-alone use of Formatters and/or Locators that require these intervals; that is, for cases where the Intervals do not need to be updated automatically. ''' self.dataInterval = mtrans.Interval(mtrans.Value(vmin), mtrans.Value(vmax)) self.viewInterval = mtrans.Interval(mtrans.Value(vmin), mtrans.Value(vmax)) 00155 class Formatter(TickHelper): """ Convert the tick location to a string """ # some classes want to see all the locs to help format # individual ones locs = [] def __call__(self, x, pos=None): 'Return the format for tick val x at position pos; pos=None indicated unspecified' raise NotImplementedError('Derived must overide') def format_data(self,value): return self.__call__(value) def format_data_short(self,value): 'return a short string version' return self.format_data(value) def get_offset(self): return '' def set_locs(self, locs): self.locs = locs class NullFormatter(Formatter): 'Always return the empty string' def __call__(self, x, pos=None): 'Return the format for tick val x at position pos' return '' class FixedFormatter(Formatter): 'Return fixed strings for tick labels' def __init__(self, seq): """ seq is a sequence of strings. For positions i<len(seq) return seq[i] regardless of x. Otherwise return '' """ self.seq = seq self.offset_string = '' def __call__(self, x, pos=None): 'Return the format for tick val x at position pos' if pos is None or pos>=len(self.seq): return '' else: return self.seq[pos] def get_offset(self): return self.offset_string def set_offset_string(self, ofs): self.offset_string = ofs 00207 class FuncFormatter(Formatter): """ User defined function for formatting """ def __init__(self, func): self.func = func def __call__(self, x, pos=None): 'Return the format for tick val x at position pos' return self.func(x, pos) 00219 class FormatStrFormatter(Formatter): """ Use a format string to format the tick """ def __init__(self, fmt): self.fmt = fmt def __call__(self, x, pos=None): 'Return the format for tick val x at position pos' return self.fmt % x 00230 class OldScalarFormatter(Formatter): """ Tick location is a plain old number. If viewInterval is set, the formatter will use %d, %1.#f or %1.ef as appropriate. If it is not set, the formatter will do str conversion """ def __call__(self, x, pos=None): 'Return the format for tick val x at position pos' self.verify_intervals() d = abs(self.viewInterval.span()) return self.pprint_val(x,d) def pprint_val(self, x, d): #if the number is not too big and it's an int, format it as an #int if abs(x)<1e4 and x==int(x): return '%d' % x if d < 1e-2: fmt = '%1.3e' elif d < 1e-1: fmt = '%1.3f' elif d > 1e5: fmt = '%1.1e' elif d > 10 : fmt = '%1.1f' elif d > 1 : fmt = '%1.2f' else: fmt = '%1.3f' s = fmt % x #print d, x, fmt, s tup = s.split('e') if len(tup)==2: mantissa = tup[0].rstrip('0').rstrip('.') sign = tup[1][0].replace('+', '') exponent = tup[1][1:].lstrip('0') s = '%se%s%s' %(mantissa, sign, exponent) else: s = s.rstrip('0').rstrip('.') return s 00268 class ScalarFormatter(Formatter): """ Tick location is a plain old number. If useOffset==True and the data range is much smaller than the data average, then an offset will be determined such that the tick labels are meaningful. Scientific notation is used for data < 1e-3 or data >= 1e4. """ def __init__(self, useOffset=True, useMathText=False): # useOffset allows plotting small data ranges with large offsets: # for example: [1+1e-9,1+2e-9,1+3e-9] # useMathText will render the offset and scientific notation in mathtext self._useOffset = useOffset self._usetex = rcParams['text.usetex'] self._useMathText = useMathText self.offset = 0 self.orderOfMagnitude = 0 self.format = '' self._scientific = True self._powerlimits = rcParams['axes.formatter.limits'] def __call__(self, x, pos=None): 'Return the format for tick val x at position pos' if len(self.locs)==0: return '' else: return self.pprint_val(x) 00295 def set_scientific(self, b): '''True or False to turn scientific notation on or off see also set_powerlimits() ''' self._scientific = bool(b) 00301 def set_powerlimits(self, lims): ''' Sets size thresholds for scientific notation. e.g. xaxis.set_powerlimits((-3, 4)) sets the pre-2007 default in which scientific notation is used for numbers less than 1e-3 or greater than 1e4. See also set_scientific(). ''' assert len(lims) == 2, "argument must be a sequence of length 2" self._powerlimits = lims def format_data_short(self,value): 'return a short formatted string representation of a number' return '%1.3g'%value def format_data(self,value): 'return a formatted string representation of a number' return self._formatSciNotation('%1.10e'% value) 00321 def get_offset(self): """Return scientific notation, plus offset""" if len(self.locs)==0: return '' if self.orderOfMagnitude or self.offset: offsetStr = '' sciNotStr = '' if self.offset: offsetStr = self.format_data(self.offset) if self.offset > 0: offsetStr = '+' + offsetStr if self.orderOfMagnitude: if self._usetex or self._useMathText: sciNotStr = r'{\times}'+self.format_data(10**self.orderOfMagnitude) else: sciNotStr = u'\xd7'+'1e%d'% self.orderOfMagnitude if self._useMathText: return ''.join(('$\mathdefault{',sciNotStr,offsetStr,'}$')) elif self._usetex: return ''.join(('$',sciNotStr,offsetStr,'$')) else: return ''.join((sciNotStr,offsetStr)) else: return '' def set_locs(self, locs): 'set the locations of the ticks' self.locs = locs if len(self.locs) > 0: self.verify_intervals() d = abs(self.viewInterval.span()) if self._useOffset: self._set_offset(d) self._set_orderOfMagnitude(d) self._set_format() def _set_offset(self, range): # offset of 20,001 is 20,000, for example locs = self.locs if locs is None or not len(locs) or range == 0: self.offset = 0 return ave_loc = npy.mean(locs) if ave_loc: # dont want to take log10(0) ave_oom = math.floor(math.log10(npy.mean(npy.absolute(locs)))) range_oom = math.floor(math.log10(range)) if npy.absolute(ave_oom-range_oom) >= 3: # four sig-figs if ave_loc < 0: self.offset = math.ceil(npy.max(locs)/10**range_oom)*10**range_oom else: self.offset = math.floor(npy.min(locs)/10**(range_oom))*10**(range_oom) else: self.offset = 0 def _set_orderOfMagnitude(self,range): # if scientific notation is to be used, find the appropriate exponent # if using an numerical offset, find the exponent after applying the offset if not self._scientific: self.orderOfMagnitude = 0 return locs = npy.absolute(self.locs) if self.offset: oom = math.floor(math.log10(range)) else: if locs[0] > locs[-1]: val = locs[0] else: val = locs[-1] if val == 0: oom = 0 else: oom = math.floor(math.log10(val)) if oom <= self._powerlimits[0]: self.orderOfMagnitude = oom elif oom >= self._powerlimits[1]: self.orderOfMagnitude = oom else: self.orderOfMagnitude = 0 def _set_format(self): # set the format string to format all the ticklabels # The floating point black magic (adding 1e-15 and formatting # to 8 digits) may warrant review and cleanup. locs = (npy.asarray(self.locs)-self.offset) / 10**self.orderOfMagnitude+1e-15 sigfigs = [len(str('%1.8f'% loc).split('.')[1].rstrip('0')) \ for loc in locs] sigfigs.sort() self.format = '%1.' + str(sigfigs[-1]) + 'f' if self._usetex: self.format = '$%s$' % self.format elif self._useMathText: self.format = '$\mathdefault{%s}$' % self.format def pprint_val(self, x): xp = (x-self.offset)/10**self.orderOfMagnitude if npy.absolute(xp) < 1e-8: xp = 0 return self.format % xp def _formatSciNotation(self, s): # transform 1e+004 into 1e4, for example tup = s.split('e') try: significand = tup[0].rstrip('0').rstrip('.') sign = tup[1][0].replace('+', '') exponent = tup[1][1:].lstrip('0') if self._useMathText or self._usetex: if significand == '1': # reformat 1x10^y as 10^y significand = '' if exponent: exponent = '10^{%s%s}'%(sign, exponent) if significand and exponent: return r'%s{\times}%s'%(significand, exponent) else: return r'%s%s'%(significand, exponent) else: return ('%se%s%s' %(significand, sign, exponent)).rstrip('e') except IndexError, msg: return s 00434 class LogFormatter(Formatter): """ Format values for log axis; if attribute decadeOnly is True, only the decades will be labelled. """ 00440 def __init__(self, base=10.0, labelOnlyBase = True): """ base is used to locate the decade tick, which will be the only one to be labeled if labelOnlyBase is False """ self._base = base+0.0 self.labelOnlyBase=labelOnlyBase self.decadeOnly = True def base(self,base): 'change the base for labeling - warning: should always match the base used for LogLocator' self._base=base def label_minor(self,labelOnlyBase): 'switch on/off minor ticks labeling' self.labelOnlyBase=labelOnlyBase def __call__(self, x, pos=None): 'Return the format for tick val x at position pos' self.verify_intervals() d = abs(self.viewInterval.span()) b=self._base # only label the decades fx = math.log(x)/math.log(b) isDecade = self.is_decade(fx) if not isDecade and self.labelOnlyBase: s = '' elif x>10000: s= '%1.0e'%x elif x<1: s = '%1.0e'%x else : s = self.pprint_val(x,d) return s def format_data(self,value): self.labelOnlyBase = False value = cbook.strip_math(self.__call__(value)) self.labelOnlyBase = True return value def is_decade(self, x): n = self.nearest_long(x) return abs(x-n)<1e-10 def nearest_long(self, x): if x==0: return 0L elif x>0: return long(x+0.5) else: return long(x-0.5) def pprint_val(self, x, d): #if the number is not too big and it's an int, format it as an #int if abs(x)<1e4 and x==int(x): return '%d' % x if d < 1e-2: fmt = '%1.3e' elif d < 1e-1: fmt = '%1.3f' elif d > 1e5: fmt = '%1.1e' elif d > 10 : fmt = '%1.1f' elif d > 1 : fmt = '%1.2f' else: fmt = '%1.3f' s = fmt % x #print d, x, fmt, s tup = s.split('e') if len(tup)==2: mantissa = tup[0].rstrip('0').rstrip('.') sign = tup[1][0].replace('+', '') exponent = tup[1][1:].lstrip('0') s = '%se%s%s' %(mantissa, sign, exponent) else: s = s.rstrip('0').rstrip('.') return s 00511 class LogFormatterExponent(LogFormatter): """ Format values for log axis; using exponent = log_base(value) """ def __call__(self, x, pos=None): 'Return the format for tick val x at position pos' self.verify_intervals() d = abs(self.viewInterval.span()) b=self._base # only label the decades fx = math.log(x)/math.log(b) isDecade = self.is_decade(fx) if not isDecade and self.labelOnlyBase: s = '' #if 0: pass elif fx>10000: s= '%1.0e'%fx #elif x<1: s = '$10^{%d}$'%fx #elif x<1: s = '10^%d'%fx elif fx<1: s = '%1.0e'%fx else : s = self.pprint_val(fx,d) return s 00534 class LogFormatterMathtext(LogFormatter): """ Format values for log axis; using exponent = log_base(value) """ def __call__(self, x, pos=None): 'Return the format for tick val x at position pos' self.verify_intervals() b = self._base # only label the decades fx = math.log(x)/math.log(b) isDecade = self.is_decade(fx) usetex = rcParams['text.usetex'] if not isDecade and self.labelOnlyBase: s = '' elif not isDecade: if usetex: s = r'$%d^{%.2f}$'% (b, fx) else: s = '$\mathdefault{%d^{%.2f}}$'% (b, fx) else: if usetex: s = r'$%d^{%d}$'% (b, self.nearest_long(fx)) else: s = r'$\mathdefault{%d^{%d}}$'% (b, self.nearest_long(fx)) return s 00567 class Locator(TickHelper): """ Determine the tick locations; Note, you should not use the same locator between different Axis because the locator stores references to the Axis data and view limits """ def __call__(self): 'Return the locations of the ticks' raise NotImplementedError('Derived must override') def autoscale(self): 'autoscale the view limits' self.verify_intervals() return mtrans.nonsingular(*self.dataInterval.get_bounds()) def pan(self, numsteps): 'Pan numticks (can be positive or negative)' ticks = self() numticks = len(ticks) if numticks>2: step = numsteps*abs(ticks[0]-ticks[1]) else: step = numsteps*self.viewInterval.span()/6 self.viewInterval.shift(step) def zoom(self, direction): "Zoom in/out on axis; if direction is >0 zoom in, else zoom out" vmin, vmax = self.viewInterval.get_bounds() interval = self.viewInterval.span() step = 0.1*interval*direction self.viewInterval.set_bounds(vmin + step, vmax - step) def refresh(self): 'refresh internal information based on current lim' pass 00609 class IndexLocator(Locator): """ Place a tick on every multiple of some base number of points plotted, eg on every 5th point. It is assumed that you are doing index plotting; ie the axis is 0, len(data). This is mainly useful for x ticks. """ def __init__(self, base, offset): 'place ticks on the i-th data points where (i-offset)%base==0' self._base = base self.offset = offset def __call__(self): 'Return the locations of the ticks' dmin, dmax = self.dataInterval.get_bounds() return npy.arange(dmin + self.offset, dmax+1, self._base) 00627 class FixedLocator(Locator): """ Tick locations are fixed. If nbins is not None, the array of possible positions will be subsampled to keep the number of ticks <= nbins +1. """ def __init__(self, locs, nbins=None): self.locs = locs self.nbins = nbins if self.nbins is not None: self.nbins = max(self.nbins, 2) def __call__(self): 'Return the locations of the ticks' if self.nbins is None: return self.locs step = max(int(0.99 + len(self.locs) / float(self.nbins)), 1) return self.locs[::step] 00650 class NullLocator(Locator): """ No ticks """ def __call__(self): 'Return the locations of the ticks' return [] 00659 class LinearLocator(Locator): """ Determine the tick locations The first time this function is called it will try to set the number of ticks to make a nice tick partitioning. Thereafter the number of ticks will be fixed so that interactive navigation will be nice """ 00670 def __init__(self, numticks = None, presets=None): """ Use presets to set locs based on lom. A dict mapping vmin, vmax->locs """ self.numticks = numticks if presets is None: self.presets = {} else: self.presets = presets def __call__(self): 'Return the locations of the ticks' self.verify_intervals() vmin, vmax = self.viewInterval.get_bounds() if vmax<vmin: vmin, vmax = vmax, vmin if self.presets.has_key((vmin, vmax)): return self.presets[(vmin, vmax)] if self.numticks is None: self._set_numticks() if self.numticks==0: return [] ticklocs = npy.linspace(vmin, vmax, self.numticks) return ticklocs def _set_numticks(self): self.numticks = 11 # todo; be smart here; this is just for dev def autoscale(self): 'Try to choose the view limits intelligently' self.verify_intervals() vmin, vmax = self.dataInterval.get_bounds() if vmax<vmin: vmin, vmax = vmax, vmin if vmin==vmax: vmin-=1 vmax+=1 exponent, remainder = divmod(math.log10(vmax - vmin), 1) if remainder < 0.5: exponent -= 1 scale = 10**(-exponent) vmin = math.floor(scale*vmin)/scale vmax = math.ceil(scale*vmax)/scale return mtrans.nonsingular(vmin, vmax) def closeto(x,y): if abs(x-y)<1e-10: return True else: return False class Base: 'this solution has some hacks to deal with floating point inaccuracies' def __init__(self, base): assert(base>0) self._base = base def lt(self, x): 'return the largest multiple of base < x' d,m = divmod(x, self._base) if closeto(m,0) and not closeto(m/self._base,1): return (d-1)*self._base return d*self._base def le(self, x): 'return the largest multiple of base <= x' d,m = divmod(x, self._base) if closeto(m/self._base,1): # was closeto(m, self._base) #looks like floating point error return (d+1)*self._base return d*self._base def gt(self, x): 'return the smallest multiple of base > x' d,m = divmod(x, self._base) if closeto(m/self._base,1): #looks like floating point error return (d+2)*self._base return (d+1)*self._base def ge(self, x): 'return the smallest multiple of base >= x' d,m = divmod(x, self._base) if closeto(m,0) and not closeto(m/self._base,1): return d*self._base return (d+1)*self._base def get_base(self): return self._base 00771 class MultipleLocator(Locator): """ Set a tick on every integer that is multiple of base in the viewInterval """ def __init__(self, base=1.0): self._base = Base(base) def __call__(self): 'Return the locations of the ticks' self.verify_intervals() vmin, vmax = self.viewInterval.get_bounds() if vmax<vmin: vmin, vmax = vmax, vmin vmin = self._base.ge(vmin) base = self._base.get_base() n = (vmax - vmin + 0.001*base)//base locs = vmin + npy.arange(n+1) * base return locs 00794 def autoscale(self): """ Set the view limits to the nearest multiples of base that contain the data """ self.verify_intervals() dmin, dmax = self.dataInterval.get_bounds() vmin = self._base.le(dmin) vmax = self._base.ge(dmax) if vmin==vmax: vmin -=1 vmax +=1 return mtrans.nonsingular(vmin, vmax) def scale_range(vmin, vmax, n = 1, threshold=100): dv = abs(vmax - vmin) maxabsv = max(abs(vmin), abs(vmax)) if maxabsv == 0 or dv/maxabsv < 1e-12: return 1.0, 0.0 meanv = 0.5*(vmax+vmin) if abs(meanv)/dv < threshold: offset = 0 elif meanv > 0: ex = divmod(math.log10(meanv), 1)[0] offset = 10**ex else: ex = divmod(math.log10(-meanv), 1)[0] offset = -10**ex ex = divmod(math.log10(dv/n), 1)[0] scale = 10**ex return scale, offset 00831 class MaxNLocator(Locator): """ Select no more than N intervals at nice locations. """ def __init__(self, nbins = 10, steps = None, trim = True, integer=False): self._nbins = int(nbins) self._trim = trim self._integer = integer if steps is None: self._steps = [1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10] else: if int(steps[-1]) != 10: steps = list(steps) steps.append(10) self._steps = steps if integer: self._steps = [n for n in self._steps if divmod(n,1)[1] < 0.001] def bin_boundaries(self, vmin, vmax): nbins = self._nbins scale, offset = scale_range(vmin, vmax, nbins) if self._integer: scale = max(1, scale) vmin -= offset vmax -= offset raw_step = (vmax-vmin)/nbins scaled_raw_step = raw_step/scale for step in self._steps: if step < scaled_raw_step: continue step *= scale best_vmin = step*divmod(vmin, step)[0] best_vmax = best_vmin + step*nbins if (best_vmax >= vmax): break if self._trim: extra_bins = int(divmod((best_vmax - vmax), step)[0]) nbins -= extra_bins return (npy.arange(nbins+1) * step + best_vmin + offset) def __call__(self): self.verify_intervals() vmin, vmax = self.viewInterval.get_bounds() vmin, vmax = mtrans.nonsingular(vmin, vmax, expander = 0.05) return self.bin_boundaries(vmin, vmax) def autoscale(self): self.verify_intervals() dmin, dmax = self.dataInterval.get_bounds() dmin, dmax = mtrans.nonsingular(dmin, dmax, expander = 0.05) return npy.take(self.bin_boundaries(dmin, dmax), [0,-1]) def decade_down(x, base=10): 'floor x to the nearest lower decade' lx = math.floor(math.log(x)/math.log(base)) return base**lx def decade_up(x, base=10): 'ceil x to the nearest higher decade' lx = math.ceil(math.log(x)/math.log(base)) return base**lx def is_decade(x,base=10): lx = math.log(x)/math.log(base) return lx==int(lx) 00902 class LogLocator(Locator): """ Determine the tick locations for log axes """ 00907 def __init__(self, base=10.0, subs=[1.0]): """ place ticks on the location= base**i*subs[j] """ self.base(base) self.subs(subs) self.numticks = 15 00915 def base(self,base): """ set the base of the log scaling (major tick every base**i, i interger) """ self._base=base+0.0 00921 def subs(self,subs): """ set the minor ticks the log scaling every base**i*subs[j] """ if subs is None: self._subs = None # autosub else: self._subs = npy.asarray(subs)+0.0 def _set_numticks(self): self.numticks = 15 # todo; be smart here; this is just for dev def __call__(self): 'Return the locations of the ticks' self.verify_intervals() b=self._base vmin, vmax = self.viewInterval.get_bounds() vmin = math.log(vmin)/math.log(b) vmax = math.log(vmax)/math.log(b) if vmax<vmin: vmin, vmax = vmax, vmin ticklocs = [] numdec = math.floor(vmax)-math.ceil(vmin) if self._subs is None: # autosub if numdec>10: subs = npy.array([1.0]) elif numdec>6: subs = npy.arange(2.0, b, 2.0) else: subs = npy.arange(2.0, b) else: subs = self._subs stride = 1 while numdec/stride+1 > self.numticks: stride += 1 for decadeStart in b**npy.arange(math.floor(vmin), math.ceil(vmax)+stride, stride): ticklocs.extend( subs*decadeStart ) return npy.array(ticklocs) def autoscale(self): 'Try to choose the view limits intelligently' self.verify_intervals() vmin, vmax = self.dataInterval.get_bounds() if vmax<vmin: vmin, vmax = vmax, vmin minpos = self.dataInterval.minpos() if minpos<=0: raise RuntimeError('No positive data to plot') if vmin<=0: vmin = minpos if not is_decade(vmin,self._base): vmin = decade_down(vmin,self._base) if not is_decade(vmax,self._base): vmax = decade_up(vmax,self._base) if vmin==vmax: vmin = decade_down(vmin,self._base) vmax = decade_up(vmax,self._base) return mtrans.nonsingular(vmin, vmax) class AutoLocator(MaxNLocator): def __init__(self): MaxNLocator.__init__(self, nbins=9, steps=[1, 2, 5, 10]) 00990 class OldAutoLocator(Locator): """ On autoscale this class picks the best MultipleLocator to set the view limits and the tick locs. """ def __init__(self): self._locator = LinearLocator() def __call__(self): 'Return the locations of the ticks' self.refresh() return self._locator() def refresh(self): 'refresh internal information based on current lim' d = self.viewInterval.span() self._locator = self.get_locator(d) def autoscale(self): 'Try to choose the view limits intelligently' self.verify_intervals() d = abs(self.dataInterval.span()) self._locator = self.get_locator(d) return self._locator.autoscale() def get_locator(self, d): 'pick the best locator based on a distance' d = abs(d) if d<=0: locator = MultipleLocator(0.2) else: try: ld = math.log10(d) except OverflowError: raise RuntimeError('AutoLocator illegal dataInterval range') fld = math.floor(ld) base = 10**fld #if ld==fld: base = 10**(fld-1) #else: base = 10**fld if d >= 5*base : ticksize = base elif d >= 2*base : ticksize = base/2.0 else : ticksize = base/5.0 #print 'base, ticksize, d', base, ticksize, d, self.viewInterval #print self.dataInterval, d, ticksize locator = MultipleLocator(ticksize) locator.set_view_interval(self.viewInterval) locator.set_data_interval(self.dataInterval) return locator __all__ = ('TickHelper', 'Formatter', 'FixedFormatter', 'NullFormatter', 'FuncFormatter', 'FormatStrFormatter', 'ScalarFormatter', 'LogFormatter', 'LogFormatterExponent', 'LogFormatterMathtext', 'Locator', 'IndexLocator', 'FixedLocator', 'NullLocator', 'LinearLocator', 'LogLocator', 'AutoLocator', 'MultipleLocator', 'MaxNLocator', )