00001 """ This module contains the instantiations of color mapping classes """ import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.colors as colors import matplotlib.cbook as cbook from matplotlib._cm import * 00014 def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None """ if name is None: name = mpl.rcParams['image.cmap'] if lut is None: lut = mpl.rcParams['image.lut'] assert(name in datad.keys()) return colors.LinearSegmentedColormap(name, datad[name], lut) 00024 class ScalarMappable: """ This is a mixin class to support scalar -> RGBA mapping. Handles normalization and colormapping """ 00030 def __init__(self, norm=None, cmap=None): """ *norm* is an instance of :class:`colors.Normalize` or one of its subclasses, used to map luminance to 0-1. *cmap* is a :mod:`cm` colormap instance, for example :data:`cm.jet` """ self.callbacksSM = cbook.CallbackRegistry(( 'changed',)) if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None self.norm = norm self.cmap = cmap self.colorbar = None self.update_dict = {'array':False} def set_colorbar(self, im, ax): 'set the colorbar image and axes associated with mappable' self.colorbar = im, ax 00053 def to_rgba(self, x, alpha=1.0, bytes=False): '''Return a normalized rgba array corresponding to *x*. If *x* is already an rgb array, insert *alpha*; if it is already rgba, return it unchanged. If *bytes* is True, return rgba as 4 uint8s instead of 4 floats. ''' try: if x.ndim == 3: if x.shape[2] == 3: if x.dtype == np.uint8: alpha = np.array(alpha*255, np.uint8) m, n = x.shape[:2] xx = np.empty(shape=(m,n,4), dtype = x.dtype) xx[:,:,:3] = x xx[:,:,3] = alpha elif x.shape[2] == 4: xx = x else: raise ValueError("third dimension must be 3 or 4") if bytes and xx.dtype != np.uint8: xx = (xx * 255).astype(np.uint8) return xx except AttributeError: pass x = ma.asarray(x) x = self.norm(x) x = self.cmap(x, alpha=alpha, bytes=bytes) return x def set_array(self, A): 'Set the image array from numpy array *A*' self._A = A self.update_dict['array'] = True def get_array(self): 'Return the array' return self._A def get_cmap(self): 'return the colormap' return self.cmap def get_clim(self): 'return the min, max of the color limits for image scaling' return self.norm.vmin, self.norm.vmax 00099 def set_clim(self, vmin=None, vmax=None): """ set the norm limits for image scaling; if *vmin* is a length2 sequence, interpret it as ``(vmin, vmax)`` which is used to support setp ACCEPTS: a length 2 sequence of floats """ if (vmin is not None and vmax is None and cbook.iterable(vmin) and len(vmin)==2): vmin, vmax = vmin if vmin is not None: self.norm.vmin = vmin if vmax is not None: self.norm.vmax = vmax self.changed() 00115 def set_cmap(self, cmap): """ set the colormap for luminance data ACCEPTS: a colormap """ if cmap is None: cmap = get_cmap() self.cmap = cmap self.changed() def set_norm(self, norm): 'set the normalization instance' if norm is None: norm = colors.Normalize() self.norm = norm self.changed() 00131 def autoscale(self): """ Autoscale the scalar limits on the norm instance using the current array """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale(self._A) self.changed() 00141 def autoscale_None(self): """ Autoscale the scalar limits on the norm instance using the current array, changing only limits that are None """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale_None(self._A) self.changed() 00152 def add_checker(self, checker): """ Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed. """ self.update_dict[checker] = False 00159 def check_update(self, checker): """ If mappable has changed since the last check, return True; else return False """ if self.update_dict[checker]: self.update_dict[checker] = False return True return False 00169 def changed(self): """ Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed' signal """ self.callbacksSM.process('changed', self) for key in self.update_dict: self.update_dict[key] = True